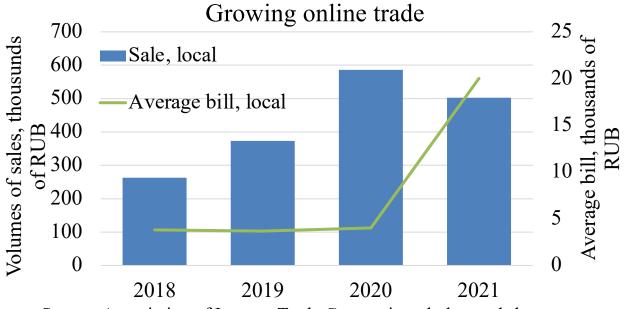
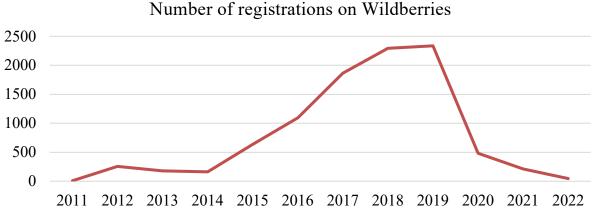
Technical efficiency in the Russian textile industry: the role of digital platforms

Olga Markova^{1,2}

Viktoriia Bannikova¹


¹ Lomonosov MSU, faculty of economics, ² RANEPA

Motivation


Rapid growth of online trade

Platforms constantly develop and penetrate many industries

Platforms influence firms in the downstream market

Source: Association of Internet Trade Companies, clothes and shoes

Source: Wildberries parsed data

Platforms' influence on incumbents and entrants is unambiguous

- 1. Positive influence: create investment incentives for incumbent companies
 - Reallocate labour towards more efficient firms, stimulate productivity growth in the industry and exit of less efficient firms (Rivares et al., 2019)
 - Decrease in information asymmetry (Liu, Brynjolfsson and Dowlatabadi, 2018; Aguiar and Waldfogel, 2018), enhance quality of products distributed via platforms.
 - Decreasing costs of incumbents: centralized delivery, inventory management and booking systems, promoting and other services.
- 2. Negative influence:
 - Reduce entry costs for less productive firms and thus decrease average quality of goods and services in the industry (Schwellnus et al., 2019).
 - Disruptor platforms may decrease the survival rates of incumbent firms especially of small firms (Andronova, Rey, Akzhigitova, 2021).
 - Dominant platforms are associated with lower productivity (Rivares et al., 2019).

Empirical strategy

Stochastic frontier model with time-variable inefficiency (Greene, 2005; Wang, Ho, 2010)

- resistant to the incidental parameters problem (Neyman, Scott, 1948)

$$y_{it} = \alpha_i + x_{it}\beta + \varepsilon_{it}, \qquad (1)$$

$$\varepsilon_{it} = \vartheta_{it} - u_{it}, \qquad \text{stochastic variable} \qquad (2)$$

$$\vartheta_{it} \sim N(0, \sigma_{\vartheta}^2), \qquad \text{measuring inefficiency} \qquad (3)$$

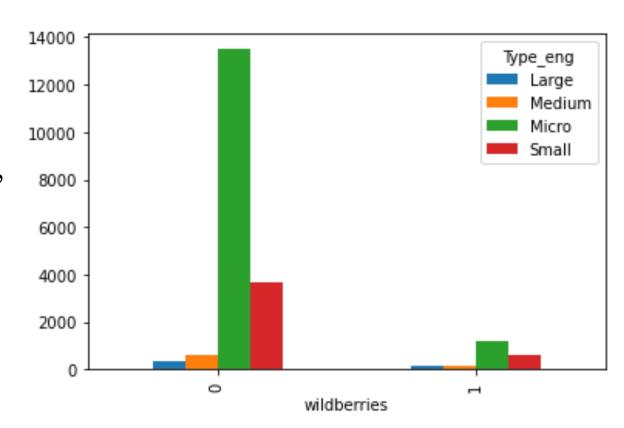
$$u_{it} = h_{it} * u_i^*, \qquad (4)$$

$$h_{it} = f(z_{it}\delta), \qquad \text{non-stochastic} \qquad \text{inefficiency determinants} \qquad (5)$$

$$u_i^* \sim N^+(\mu, \sigma_u^2), \qquad i = 1, ..., N, \qquad t = 1, ..., T \qquad (6)$$

Data

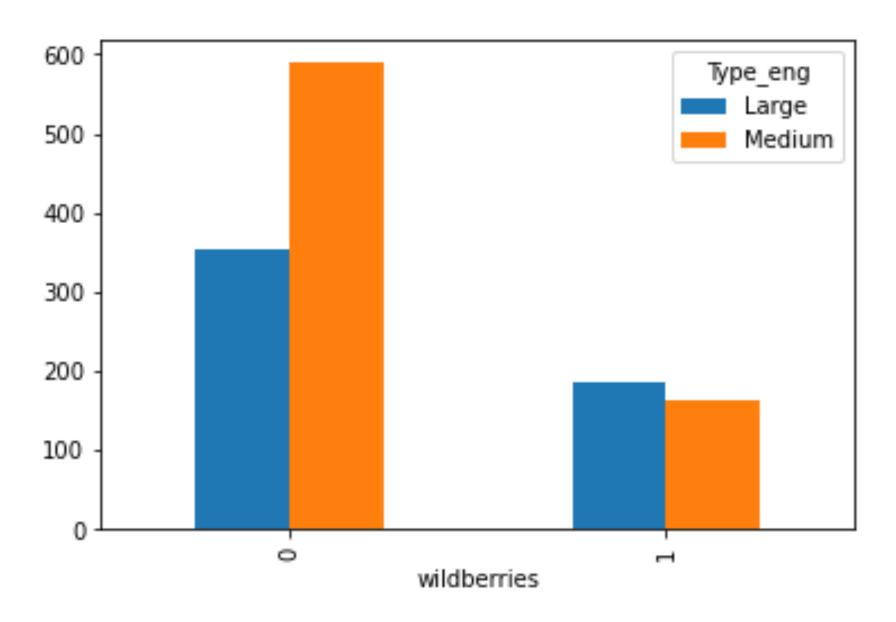
Source	Variables	Description
Spark Interfax	ln_revenue	Log revenue (thousands of RUB)
	Ln_capital	Log fixed assets (thousands of RUB)
	Ln_labour	Number of workers
	Ln_materials	Log current assets (thousands of RUB)
Association of Internet Trade	locsale_w_1	Log of local yearly internet trade turnover
Companies, clothes and		by product categories (clothes and shoes)
shoes		and region, mln RUB
	locbill_w_1	Log of local average bill of goods bought via
		internet by product categories (clothes and
		shoes) and region, RUB
Wildberries (parsed from the	wildberries	Presence of a firm on a platform, binary
platform website) for 2018 –		
2020		


Working with the data

Industries:

- Textiles
- Manufacture of wearing apparel,
 dressing and dyeing of fur
- Leather, leather products and footwear
- Retail trade

Regions:


All, except Moscow, Saint
 Petersburg, Sevastopol and Krym

$$N = 323$$
 (large and medium)

$$T=4$$

Descriptive statistics - 1

Descriptive statistics - 2

Variable	Obs	Mean	Std.	Min	Max
			Dev.		
Ln capital	1292	17.319	2.391	9.547	22.426
Ln labour	1292	4.917	1.444	0	8.442
Ln materials	1292	20.419	1.047	15.411	23.839
TR log	1292	21.114	.954	15.113	23.971
locsale w	1292	10.112	1.533	6.113	11.839
locbill w l	1292	8.73	.775	7.236	10.285

R	esi	ılts

	(1)	(2)	(3)	(4)
VARIABLES	frontier	hleq	vsigmas	usigmas
locsale_w		-0. 324***		
		(0.000)		
locbill_w		-0. 577***		
		(0.008)		
wildberries		-1.462***		
		(0.001)		
year2019		-0.281***		
		(0.001)		
year2020		-0.351**		
		(0.027)		
year2021		0.407		
		(0.399)		
Ln_capital	-0.007			
_ -	(0.551)			
Ln_labour	0.320***			
_	(0.000)			
Ln materials	0.455***			
_	(0.000)			
Constant	`		-2.922***	15.123***
			(0.000)	(0.000)

N = 1292

Results

	(1)	(2)	(3)	(4)
VARIABLES	frontier	hleq	vsigmas	usigmas
locsale_w		-0. 324***		
		(0.000)		
locbill_w		-0. 577***		
		(0.008)		
wildberries		-1.462***		
		(0.001)		
year2019		-0.281***		
		(0.001)		
year2020		-0.351**		
		(0.027)		
year2021		0.407		
		(0.399)		
Ln_capital	-0.007			
	(0.551)			
Ln_labour	0.320***			
_	(0.000)			
Ln_materials	0.455***			
	(0.000)			
Constant	•		-2.922***	15.123***
			(0.000)	(0.000)

N = 1292

Results	

	(1)	(2)	(3)	(4)
VARIABLES	frontier	hleq	vsigmas	usigmas
locsale_w		-0. 324***		
		(0.000)		
locbill_w		-0. 577***		
		(0.008)		
wildberries		-1.462***		
		(0.001)		
year2019		-0.281***		
		(0.001)		
year2020		-0.351**		
		(0.027)		
year2021		0.407		
		(0.399)		
Ln_capital	-0.007	<u> </u>		
	(0.551)			
Ln labour	0.320***			
_	(0.000)			
Ln_materials	0.455***			
_	(0.000)			
Constant			-2.922***	15.123***
			(0.000)	(0.000)

N = 1292

Drawbacks and future plans

- 1. Do not know the exact effect of platform => matching
- 2. Effects on large and medium enterprises does not depict an overall effect of Wildberries => use the whole dataset with firm type dummies or matching
- 3. Biased estimated: we use balanced panel and do not account for entry and exit decisions => SFA with unbalanced panels and try (Olley & Pakes, 1996) and others

Conclusions

- Online platforms are an important contributor to firm efficiency in the textile industry along with the internet trade volumes and average bill in that region
- We observe a tendency of continuously increasing efficiency during 2018-2020 with a slight decrease in 2021

For a discussion

Are there any methods of SFA that account for entry and exit? Additional variable?

Literature

- 1. Aguiar, L. and Waldfogel, J. (2018) *Platforms, promotion, and product discovery: Evidence from Spotify playlists*. National Bureau of Economic Research.
- 2. Greene, W. (2005). 'Reconsidering heterogeneity in panel data estimators of the stochastic frontier model'. *Journal of econometrics*, 126(2), pp. 269-303.
- 3. Liu, M., Brynjolfsson, E. and Dowlatabadi, J. (2018) 'Do digital platforms reduce moral hazard? The case of Uber and taxis'. National Bureau of Economic Research.
- 4. Neyman, J., & Scott, E. L. (1948). 'Consistent estimates based on partially consistent observations'. *Econometrica: Journal of the Econometric Society*, pp. 1-32.
- 5. OECD (2020) 'The Role of Online Platforms in Weathering the COVID-19 Shock.', *Electronic resource. OECD Policy Responses to Coronavirus* (COVID-19). OECD Publishing Paris.
- 6. Rivares, A. B. *et al.* (2019) 'Like it or not? The impact of online platforms on the productivity of incumbent service', *OECD Economic Department Working Papers*. Organisation for Economic Cooperation and Development (OECD), (1548), pp. 1–59.
- 7. Schwellnus, C. et al. (2019) 'Gig economy platforms: Boon or Bane?' OECD.
- 8. Wang, H. J., & Ho, C. W. (2010). 'Estimating fixed-effect panel stochastic frontier models by model transformation'. *Journal of Econometrics*, 157(2), pp. 286-296.
- 9. Andronova E.S., Rey A.I., Akzhigitova G.R. (2021) 'Impact of digital multi-sided platforms on firm survival in retail'. *Voprosy Ekonomiki*.(8): pp. 93-122. (In Russ.) .